Skip to main content

Resources

Development of a Common Platform for Unifying Humanoids Research

Contact

Youngmoo Kim
 
Building upon previous collaborative work with small humanoid robots, this project is embarking on an ambitious new research project involving multiple adult-sized humanoids. There is an overwhelming disparity in terms of resources devoted to humanoids research in the United States versus research in other countries that have heavily invested in this area of robotics. The goal of this ambitious five-year project is to rapidly advance U.S. humanoid research by developing a common open platform. To date, all full-sized humanoids have been individual custom-made units, and advances made using one design do not necessarily translate to others. Currently, Drexel is the only institution in the United States that has HUBO, a world-class adult-sized humanoid developed at the Korea Advanced Institute for Science and Technology (KAIST), resulting from a prior NSF Partnership for International Research and Education (PIRE) award. Building upon the unique expertise developed at Drexel in assembling and maintaining HUBO, the proposed platform will significantly extend its current capabilities, resulting in six identical units. The project’s goal is to develop a new common platform (HUBO+) that will consist of the world’s first homogenous full-sized humanoid team, and each of the participating schools will have access to a HUBO+ unit to enhance their research efforts. The project partners include researchers at Carnegie Mellon, MIT, Ohio State, Purdue, U.Penn, USC, and Virginia Tech, representing a critical mass of humanoids research in the United States. Current humanoids are rarely autonomous and not ready for unconstrained interaction with humans. Having a consistent platform will facilitate rapid progress in areas needed for autonomy and natural interaction, including mobility, manipulation, vision, speech communication and cognition, and learning. Furthermore, humanoids research is inherently interdisciplinary and integrative, and catalyzes interest in engineering among younger students. The project’s outreach partners, including several high-profile museums, will introduce people of all ages to the technologies of robotics, particularly useful for recruiting K–12 students into science, engineering, and mathematics.