Environmental Science and Biocomplexity A case-based approach to learning about complex systems

Gillian Puttick TERC

Funded by the National Science Foundation

STEM Smart workshops are funded by the National Science Foundation grant #1449550. Any opinions, findings, conclusions or recommendations at this event or in these materials are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.

Biocomplexity overview

 Capstone Course for Grades 11-12

- Interdisciplinary
- Consistent with the vision and goals of NGSS

Biocomplexity R&D

- Extensively implemented and revised
- Piloted with 13 teachers
- Field-tested with 33 teachers (650+ students)
- Significant learning gains
- Available from Its About Time publishers

Case-based learning

- Real world scenarios
- Real data

ARCTIC: Local species conservation in light of global climate change impacts

SPRAWL: Regional land use plan for farm land, housing development, conservation

AMAZONIA: Biome-wide land use plan considering rights of indigenous peoples, rainforest conservation, and ranching

What is Biocomplexity?

Storyline

All Units are organized to address a Guiding Question. Example: Should the school replace the streamside woodland on the school grounds with an additional athletic field?

Real world scenarios

Crosscutting Concepts

- Scale
- Systems
- Practices
- Planning/carrying out investigations
- Analyzing/interpreting data
- Developing/using models
- Using data as evidence
- Communicating results

• Patterns

Core Ideas

- Cycles of energy and matter
- Ecosystem dynamics
- Biodiversity
- Ecological succession
- Climate change

Practices

- Ask questions
- Plan and conduct investigations
- Analyze data

Disciplinary core ideas

 Organization for matter and energy flow in organisms

Crosscutting Concepts

• Energy and matter

Practices

• Constructing and using models

Disciplinary core ideas

• Cycles of matter and energy flow in ecosystems

Crosscutting concepts

- Using mathematics and computational thinking
- Energy and matter

SHARE IN SHARE

Practices

Constructing and using models

Disciplinary core ideas

- Cycles of matter and energy flow in ecosystems
- Human impacts on Earth systems

Crosscutting concepts

- Using mathematics and computational thinking
- Energy and matter
- Scale

Practices

- Using models
- Analyzing/interpreting data
- Math/comp. thinking **Disciplinary core ideas**
- Global climate change
- Earth and human activity

Crosscutting concepts

- Energy and matter
- Scale
- Stability and change

NGSS 3 dimensions: Urban unit

Practices

- Ask questions
- Plan and conduct investigations
- Analyze data

Disciplinary core ideas

- Cycles of matter and energy flow in organisms
- Ecosystem Dynamics, Functioning, and Resilience
- Earth and human activity

Crosscutting Concepts

- Energy and matter
- Patterns
- Systems and systems models

NGSS 3 dimensions: Urban unit

Practices

- Ask questions
- Plan and conduct investigations
- Analyze data

Disciplinary core ideas

- Cycles of matter and energy flow in organisms
- Ecosystem Dynamics, Functioning, and Resilience
- Biodiversity and humans
- Earth and human activity

Crosscutting Concepts

- Energy and matter
- Patterns

NGSS 3 dimensions: Urban unit

Practices

 Asking questions and defining problems
 Obtaining, evaluating and communicating information

Disciplinary core ideas

Matter and energy flow
Ecosystem Dynamics, Functioning
Biodiversity and humans
Earth and human activity

Crosscutting Concepts

•Energy and matter •Patterns •Scale

NGSS 3 dimensions: Arctic unit

Practices

- Developing and using models
- Using mathematics and computational thinking
- Analyzing and interpreting data

Disciplinary core ideas

- Global climate change
- Human impact on Earth systems
- Cycles of matter and energy transfer in ecosystems

Crosscutting Concepts

- Cause and effect
- Systems and system models
- Energy and matter
- Stability and change

Practices

- Develop and use models
- Use mathematics and computational thinking
- Analyze and interpret data

Disciplinary core ideas

• Ecosystem Dynamics, Functioning, and Resilience

Crosscutting Concepts

- Cause and effect
- Stability and change
- Patterns

Age Class	Number Indivs	ReproO utput	GradPr ob	ТІМЕ	Total Populati on
1	10	0	0.014	0	50
2	10	0	0.058	5	5380
3	10	325	0.8	10	4170
4	10	409	0.8	15	2872
5	10	514	0	20	2098

2

3

4

5

10

10

10

10

NGSS 3 dimensions: Arctic unit

Projection of Sumbarons **Population Size** 25 Numbe ReproC Age GradP TIME Class rIndivs utput ob 1 10 0.014 0 0

0

325

409

514

0.058

0.8

0.8

0

5

10

15

20

Practices

- Developing and using models
- Using mathematics and computational thinking
- Analyzing and interpreting data

Disciplinary core ideas

- Variation in traits
- Natural selection

Crosscutting Concepts

- Cause and effect
- Stability and change
- Patterns

Tota

or

50

5380

4170

2872

2098

Populat

Sea ice

Population model

NGSS 3 dimensions: Arctic unit

Practices

- Construct explanations and design solutions
- Engage in argument from evidence

Disciplinary core ideas

- Natural selection
- Adaptation
- Biodiversity and humans Interdependent relationships in ecosystems
- Biodiversity and Humans
 Crosscutting Concepts
- Cause and effect
- Stability and change
- Patterns

Evolution

Fast plants

First steps towards alignment: Analyzing a single lesson

1. Core ideas

- identify learning goals
- identify learning experiences that align with the target core ideas
- eliminate learning experiences that don't

2. Questions that drive student learning

- identify questions that frame activities in the lesson

3. Evidence (highlighting practices)

- identify what evidence students will need to develop explanations
- consider what classroom activities will allow students to collect evidence

3. Student opportunities to make meaning

 identify opportunities for students to communicate and explain – to share their thinking and reasoning, arguing from evidence

Overview

Biocomplexity curriculum

•Accompanying "educative" Teacher Guide

- Background science information
- Examples of student work
- Formative and summative performance assessments
- Additional resources online

Overview

Biocomplexity Teacher Guide

- •The instructional approach
 - o "Flipped classroom"
 - \circ 3 types of questions

Disciplinary Core Ideas

What are *human impacts on Earth systems* in Amazonia?

Land uses in Amazonia:

- Soy farming
- Cattle ranching
- Ecotourism
- Conservation
- Development

Disciplinary Core Ideas

Carbon

Cycles of energy and matter

Energy

Nitrogen + Water

Disciplinary Core Ideas

Ecosystem dynamics and resilience... Biodiversity...

...contrasting prairie and agriculture

Cross-cutting concepts

Scale - Time

15-20 year life span

1-1.5 month life span

NGSS 3 dimensions: Arctic unit

Age Class	NumberIndivs	ReproOutput	GradProb	TIME	Total Population
1	10	0	0.014	0	50
2	10	0	0.058	5	5380
3	10	325	0.8	10	4170
4	10	409	0.8	15	2872
5	10	514	0	20	2098