Read like a scientist

Jacqueline Barber
Associate Director, Lawrence Hall of Science
Director, Learning Design Group
Amplify Science.

www.scienceandliteracy.org
www.learningdesigngroup.org
www.argumentationtoolkit.org
www.sciencearguments.weebly.com
We set out to investigate a model of science instruction that:

- Includes a balance of learning modalities DO-TALK-READ-WRITE
- Employs reading and writing in ways that are authentic to science
- Provides students (and teachers) with explicit instruction in literacy skills and strategies
Impact on Learning

Three Gold Standard Studies

- UCLA’s CRESST
- 89 classrooms.
- Random assignment to treatment and comparison groups
- Comparison group: content-comparable, business-as-usual
Impact on Learning

A Better Way to Learn Science

- Our combined science literacy program can elevate students previously scoring the 50th percentile in science into the top third of their peers.

 Average effect size: 0.61 (Cohen’s D)
Impact on Learning

Gains in Literacy as well as Science

Positive Results Across the Board:

STUDENTS
Out-perform control students on measures of:
- science conceptual knowledge
- science vocabulary

Perform equivalently or higher than control students on measures of:
- science reading comprehension
- science writing

TEACHERS
Spend more time teaching science than control teachers

Have more student-to-student talk in their classrooms
Advantage Holds for English Learners

Impact on Learning
Our Basic Approach to Literacy-Rich Science Learning

<table>
<thead>
<tr>
<th>DO</th>
<th>TALK</th>
</tr>
</thead>
<tbody>
<tr>
<td>READ</td>
<td>WRITE</td>
</tr>
</tbody>
</table>
Our Approach

Doing Science

Need a Question:
What do Magnets Attract?

<table>
<thead>
<tr>
<th>DO</th>
<th>TALK</th>
</tr>
</thead>
<tbody>
<tr>
<td>READ</td>
<td>WRITE</td>
</tr>
</tbody>
</table>
Our Approach

Gather evidence from firsthand and secondhand sources

DO: Search for Evidence through Experience

READ: Search for Evidence in Text

<table>
<thead>
<tr>
<th>Object</th>
<th>Kind of metal</th>
<th>Does a magnet attract it?</th>
</tr>
</thead>
<tbody>
<tr>
<td>can</td>
<td>aluminum</td>
<td>no</td>
</tr>
<tr>
<td>car clip</td>
<td>steel (mostly made of iron)</td>
<td>yes</td>
</tr>
<tr>
<td>key</td>
<td>copper and zinc</td>
<td>no</td>
</tr>
<tr>
<td>aluminum</td>
<td></td>
<td>no</td>
</tr>
<tr>
<td>iron</td>
<td></td>
<td>yes</td>
</tr>
<tr>
<td>zinc and iron</td>
<td></td>
<td>yes</td>
</tr>
<tr>
<td>necklace</td>
<td>silver</td>
<td>no</td>
</tr>
<tr>
<td>ring</td>
<td>gold</td>
<td>no</td>
</tr>
<tr>
<td>wool</td>
<td>steel (mostly made of iron)</td>
<td>yes</td>
</tr>
<tr>
<td>in kitchen</td>
<td>steel (mostly made of iron)</td>
<td>no</td>
</tr>
<tr>
<td>under sink</td>
<td>copper</td>
<td>no</td>
</tr>
<tr>
<td>wing pan</td>
<td>iron</td>
<td>yes</td>
</tr>
<tr>
<td>lamp</td>
<td>brass (made of copper and zinc)</td>
<td>no</td>
</tr>
</tbody>
</table>
Our Approach

Written + Oral Discourse (for a purpose)

TALK: Discuss claims

WRITE: Write explanations
Typical Approach

As Opposed to “Doing School”

DO: Students investigate with magnets
READ: Students read about magnets
WRITE: Students write what they learned about magnets
Our Approach

Engage in the practices of science

<table>
<thead>
<tr>
<th>DO</th>
<th>TALK</th>
</tr>
</thead>
<tbody>
<tr>
<td>READ</td>
<td>WRITE</td>
</tr>
</tbody>
</table>

Have students **read**, **write**, and engage in **talk** as practices of science.
Read like a scientist
Write like a scientist
Discuss like a scientist
Argue like a scientist
Read like a scientist

Practice 1: Ask questions

Practice 4: Analyze and interpret data

Practice 5: Use mathematics computational thinking

Practice 6: Construct explanations

Practice 7: Engage in argument from evidence

Practice 8: Obtain and evaluate information
3 Important Shifts

Read like a student → Read like a scientist

- Goal for reading
- Approach to reading
- Purpose for reading
Different outlook about the goal of reading

How do students view reading?
• With the goal of absorbing what the text says

How do scientists view reading?
• As an act of inquiry
Different outlook about the goal of reading

How do scientists view reading?

• As an act of inquiry

Paleontologists have set up their campsites between these giant rocks at Wadi Al Hitan. The rocks were once connected, but over millions of years, strong winds eroded the rock, leaving this large open space.

The Valley of the Whales. Looking at the dry, cracked ground, it's hard to believe that this place was once covered by water. However, the traces of extinct plants and animals found here tell us that this area looked very different about 40 million years ago: it was part of a shallow ocean, called the Tethys.

When the ancient sea creatures that lived in the Tethys Sea died, some of their bones were preserved in layers of sand and rock at the bottom of the ocean. Over millions of years, the substance that made up their bones changed. It became more like rock than bone. The fossilized remains of sea turtles, manatees, sharks, crocodiles, swamp trees, and their relatives have been uncovered at Wadi Al Hitan.

Wadi Al Hitan is considered the best place in the world to see the fossil evidence of ancient whales. Scientists have found more fossils of ancient whales here than in any other place on Earth. Scientists are especially interested in these fossils because they provide
Wadi Al Hitan (Valley of the Whales)

A long bumpy car ride from the busy modern city of Cairo, Egypt takes you into the empty silence of the “Western Desert”. In this dry and windy spot, you will find an amazing place called Wadi Al Hitan, or the Valley of the Whales. Looking at the dry, cracked ground, it’s hard to believe that this place was once covered by water. However, the traces of extinct plants and animals found here tell us that this area looked very different about 40 million years ago: it was part of a shallow ocean, called the Tethys Sea.

When the ancient sea creatures that lived in the Tethys Sea died, some of their bones were preserved in layers of sand and rock at the bottom of the ocean. Over millions of years, the substance that made up their bones changed. It became more like rock than bone. The fossilized remains of sea turtles, manatees, sharks, crocodiles, swamp trees, and their relatives have been found here, giving us a glimpse into the past.

Paleontologists have set up their campsite in between these giant rocks at Wadi Al Hitan. The rocks were once connected, but over millions of years, strong winds eroded the rock, leaving this large open space.
Supports for learning how to read like a scientist

Provide explicit instruction in:

• how to have a conversation with the text
• comprehension strategies, such as asking questions making inferences, setting a goal for reading, making predictions
Our Approach

Don’t Assume

<table>
<thead>
<tr>
<th>DO</th>
<th>TALK</th>
</tr>
</thead>
<tbody>
<tr>
<td>READ</td>
<td>WRITE</td>
</tr>
</tbody>
</table>

That students know how to read science text, write science text, and engage in science talk.
Different approaches to reading

How do students read?
- From beginning to end

How do scientists read?
- Skip around
- Use headings
- Read captions
- Compare text descriptions to visual representations
- Check their understanding
Different approaches to reading

How scientists read

• Skip around

Contents

My Sister ... 4
Explanation 1: Magnetic Force 6
Explanation 2: Magnetic Poles 9
Explanation 3: What Magnets Attract 14
My Sister’s Notebook 19
Inventing with Magnets 22
Glossary .. 23
Different **approaches** to reading

How scientists read

- Compare text descriptions to visual representations

Poison oozes from a rough-skinned newt's skin.
Supports for learning how to read like a scientist

Provide explicit instruction in:

• use of text features
• interpreting visual representations
• Comparing text and visual representations
Different purposes for reading

Why do students read?
• Because the teacher assigned a reading
• To learn information

Why do scientists read?
• To situate their research
• To interpret others’ data and critique their findings
• To find specific information to support their own investigations
• To learn about others’ procedures and experiments
• To learn what other scientists are learning
Opportunities for students to engage in reading for multiple purposes

Why Scientists Read

- To situate their research
- To interpret others’ data and critique their findings
- To find specific information to support their own investigations
- To learn about others’ procedures and experiments
- To learn what other scientists are learning
Why do some metals attract magnets and some do not?

Why Scientists Read

- To interpret others’ data and critique their findings
- To find specific information to support their own investigations

<table>
<thead>
<tr>
<th>Object</th>
<th>Kind of metal</th>
<th>Does a magnet attract it?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Juice can</td>
<td>aluminum</td>
<td>no</td>
</tr>
<tr>
<td>Paper clip</td>
<td>steel (mostly made of iron)</td>
<td>yes</td>
</tr>
<tr>
<td>Penny</td>
<td>copper and zinc</td>
<td>no</td>
</tr>
<tr>
<td>Foil</td>
<td>aluminum</td>
<td>no</td>
</tr>
<tr>
<td>Nail</td>
<td>iron</td>
<td>yes</td>
</tr>
<tr>
<td>Nail</td>
<td>zinc and iron</td>
<td>yes</td>
</tr>
<tr>
<td>Mom’s necklace</td>
<td>silver</td>
<td>no</td>
</tr>
<tr>
<td>Dad’s ring</td>
<td>gold</td>
<td>no</td>
</tr>
<tr>
<td>Steel wool</td>
<td>steel (mostly made of iron)</td>
<td>yes</td>
</tr>
<tr>
<td>Sink in kitchen</td>
<td>steel (mostly made of iron)</td>
<td>no</td>
</tr>
<tr>
<td>Pipe under sink</td>
<td>copper</td>
<td>no</td>
</tr>
<tr>
<td>Frying pan</td>
<td>iron</td>
<td>yes</td>
</tr>
<tr>
<td>Tall lamp</td>
<td>brass (made of copper and zinc)</td>
<td>no</td>
</tr>
</tbody>
</table>
Do all magnets have the same magnetic force?

Why Scientists Read

• To learn about others’ procedures and experiments
Models Scientific Explanations

Why Scientists Read

• To learn what other scientists are learning

“So?” I said. “What’s your explanation?”
She said, “I think the horseshoe magnet is stronger than the bar magnet. It can pull with more magnetic force. A stronger magnet will pull the paper clip up from farther away.”

Then she gave me a big smile. She showed me a little magnet called a mighty magnet. She held it over the paper clip. The paper clip jumped almost two inches in the air to reach the strong mighty magnet!
Connects to the importance of magnet investigations in the world outside the classroom

Why Scientists Read

- To situate their research

Inventing with Magnets
Supports for learning how to read like a scientist

• Frame instruction as questions to figure out
• Provide texts that:
 – introduce secondhand (text) sources of evidence that complement the evidence students are gathering from firsthand sources
 – are closely aligned to what students are trying to figure out
 – enable students to read for the variety of purposes that scientists read
A Broader Definition of Science and Engineering Practices

1. Asking questions
2. Developing and using models
3. Planning and carrying out investigations
4. Analyzing and interpreting data
5. Using mathematics and computational thinking
6. Constructing explanations
7. Engaging in argument from evidence
8. Obtaining, evaluating, and communicating information
3 Important Shifts

Read like a student → Read like a scientist

• Goal for reading
• Approach to reading
• Purpose for reading
3 Important Factors

• The role of text
• How students interact with text
• The nature of the text
Disciplinary Literacy
Strategy Guides for Grades K-5

- Gathering Information from Science Texts
- Interpreting Visual Representations
- Teaching About Multiple Meaning words
- Teaching Concept Mapping
- Teaching Text Structure
- Using Anticipation Guides
- Using Visual Evidence to Make Inferences
Disciplinary Literacy
Strategy Guides for Grades 6-8

- Reading Arguments
- Understanding the Role of Relevant Evidence in Supporting a Claim
- Using the Reasoning Tool to Develop a Strong Written Argument
- Practicing Oral Discourse Skills

http://sciencearguments.weebly.com/teaching-strategies.html
www.scienceandliteracy.org
www.learningdesigngroup.org
www.argumentationtoolkit.org
www.sciencearguments.weebly.com

jbarber@berkeley.edu