Framework Vision for Science Education and Implications for Next Generation Science Standards

Presentation by Brett D. Moulding Partnership for Effective Science Teaching and Learning
Vision for Science
Teaching and Learning
Builds on the Research on Learning the Ideas of Science
Reports that Shape Where We Find Ourselves Today

BENCHMARKS
FOR SCIENCE LITERACY

AMERICAN ASSOCIATION FOR THE ADVANCEMENT OF SCIENCE
PROJECT 2061

Building Capacity in State Science Education BCSSE
The Framework

– Vision of the Framework
– Goals of the Framework
– Three Dimensions
Goals for Science Education

The Framework’s vision takes into account two major goals for K-12 science education:

(1) Educating all students in science and engineering.

(2) Providing the foundational knowledge for those who will become the scientists, engineers, technologists, and technicians of the future.

The Framework principally concerns itself with the first task—what all students should know in preparation for their individual lives and for their roles as citizens in this technology-rich and scientifically complex world.
The Framework is Designed to Help Realize a Specific Vision for Science Education

• A vision of science education in which all students’ experiences over multiple years foster progressively deeper understanding of science.

• Students actively engage in scientific and engineering practices in order to deepen their understanding of crosscutting concepts and disciplinary core ideas.

• In order to achieve the vision embodied in the Framework and to best support students’ learning, all three dimensions need to be integrated into the system of standards, curriculum, instruction, and assessment.

• Implications...

Framework Page 217
Structure/Dimensions of Framework

- Science and Engineering Practices
- Disciplinary Core Ideas
- Crosscutting Concepts

“The three dimensions of the Framework, which constitute the major conclusions of this report, are presented in separate chapters. However, in order to facilitate students’ learning, the dimensions must be woven together in standards, curricula, instruction, and assessments.

When they explore particular disciplinary ideas from Dimension 3, students will do so by engaging in practices articulated in Dimension 1 and should be helped to make connections to the crosscutting concepts in Dimension 2.”

Framework Pages 29 - 30
Framework → Standards
Student Performance Expectations

Core Ideas
Crosscutting Concepts
Practices
3-D Model = Science at the Intersection

Science and Engineering Practices

Student Performance
Instruction
Professional Development

Disciplinary Core Ideas

Crosscutting Concepts
Science and Engineering Practices

Explanations Using Evidence
Activity

Group Activity
Explore how water moves from one cup to another through a paper towel.

1. Explore – place water in one cup, place an empty cup next to it. Connect them with a small piece of paper towel.
2. Formulate questions and investigate **explanations** for how the water moves from one cup to the other cup.
3. Develop **evidence** to support your **explanations**.

Individual Activity
4. Write in your journal or on note paper your **explanation** that may be used to explain this phenomena to others. Include the **evidence** to support the **explanation**.

Reflection
5. Write a short reflection on the nature of science instruction that leads students to develop **explanations** based upon **evidence**.
Science and Engineering Practices

1. Asking questions (science) and defining problems (engineering)
2. Developing and using models
3. Planning and carrying out investigations
4. Analyzing and interpreting data
5. Using mathematics, information and computer technology, and computational thinking
6. Constructing explanations (science) and designing solutions (engineering)
7. Engaging in argument from evidence
8. Obtaining, evaluating, and communicating information

Framework Pages 41-82
Connecting the Practices

- **Asking questions** to focus *investigations*, using *investigations* and analyzing and interpreting *data* using *mathematics* to provide evidence to construct explanations.

- **Using models** to 1) *communicate information and explanations*, 2) gather evidence, 3) make predictions.

- **Engaging in argumentation** to 1) support explanations, 2) Make sense of ideas, and 3) communicate explanations
Engineering Practices

• Engineering practices are a natural extension of science practices.

• Science instruction often includes opportunities for engineering practices.

• Engineering is not a new component of science standards. Some states currently have elements of engineering in their science standards.

• The Framework provides meaningful connections of science and engineering in the Practices.
Crosscutting Concepts
Crosscutting Concepts

The Framework has identified seven key Crosscutting Concepts:

- Cause and Effect
- Patterns
- Systems
- Scale
- Change and Stability
- Structure and Function
- Matter and Energy
Causality
Cause and Effect
Structure and Function

Systems
Scale
Change and Stability
Matter and Energy

Patterns
Crosscutting Concepts

• These concepts should become common and familiar touchstones across the disciplines and grade levels.

• Explicit reference to the concepts, as well as their emergence in multiple disciplinary contexts, can help students develop a cumulative, coherent, and usable understanding of science and engineering.
Organizing the Crosscutting Concepts

- This set of crosscutting concepts begins with two concepts that are fundamental to the nature of science: that observed patterns can be explained and that science investigates cause and effect relationships by seeking the mechanisms that underlie them.

- The next concept—scale, proportion, and quantity—concerns the sizes of things and the mathematical relationships among disparate elements.

- The next four concepts—systems and system models, energy and matter flows, structure and function, and stability and change—are interrelated in that the first is illuminated by the other three. Each concept also stands alone as one that occurs in virtually all areas of science and is an important consideration for engineered systems as well.

Framework Pages 84-85
Disciplinary Core Ideas

Physical Science

• PS1: Matter and Its Interactions
• PS2: Motion and Stability: Forces and Interactions
• PS3: Energy
• PS4: Waves and Their Applications in Technologies for Information Transfer

Life Science

• LS1: From Molecules to Organisms: Structure and Processes
• LS2: Ecosystems: Interactions, Energy, and Dynamics
• LS3: Heredity: Inheritance and Variation of Traits
• LS4: Biological Evolution: Unity and Diversity
Disciplinary Core Ideas

Earth and Space Science

• ESS1: Earth’s Place in the Universe
• ESS2: Earth’s Systems
• ESS3: Earth and Human Activity

Engineering, Technology, and Applications of Science

• ETS1: Engineering Design
• ETS2: Links Among Engineering, Technology, Science, and Society
Putting it All Together in a “Performance”
Engaging in Science

Science and Engineering Practices
Crosscutting Concepts
Core Ideas
Constructing Explanations of Causality from Evidence

Using Core Ideas

Using Patterns for Evidence

Gathering Evidence

Developing Models
The Intersection is the Performance!

• The Framework and NGSS provides a clear vision of science performance at the intersection of the three dimensions.
• It is not about unpacking, it is about science instruction that engages students in performances that can be described by the intersection, not the parts of the intersection.
The Three Dimensions Work Together

Students are able to make sense of science phenomena when they develop causal relationships, supported by evidence, of observed phenomena in defined systems.

These explanation rely on Core Ideas (e.g., matter is made of particles, matter cycles, energy flows, smaller objects are attracted to larger objects by gravity).

The crosscutting concepts organize a set of familiar touchstones for students to use in their sense making and evidence gathering. These crosscutting concepts are utilized in the process by which students gather and use evidence in the science and engineering practices.

The practices engage students in obtaining and using information obtained from investigations and other sources, developing and using models, constructing explanations and communicating arguments that support these explanations.
Accessing the Framework, Ready, Set Science, Taking Science to School and NGSS

• *Ready, Set, SCIENCE!*

• Framework for K-12 Science Standards

• Nest Generation Science Standards
Discussion and Questions
Discussion and Questions

Brett Moulding

- Partnership for Effective Science Teaching and Learning

- mouldingb@ogdendsd.org